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LATIS modeling of laser induced midplane and backplane spallation

Michael E. Glinsky, David S. Bailey and Richard A. London

Lawrence Livermore National Laboratory
Livermore, California  94550

ABSTRACT

The computer code LATIS is used to simulate midplane and backplane spallation resulting from short pulsed laser
absorption.  A 1-D planar geometry is simulated with an exponential laser absorption profile.  The laser pulse length is
assumed to be much shorter than the sound transit time across the laser absorption length.  The boundary conditions are a
fixed front plane and free backplane (backplane spall) and a free front plane and a fixed midplane (midplane spall).  The
NBS/NRC equation of state for water is used with a self-consistent yet empirical material strength and failure model.  The
failure model includes the effects of void nucleation, growth and coalescence.  Definite signatures of the nucleation and
coalescence thresholds are found in the back surface motion for backplane spallation.
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2.  INTRODUCTION

As the applications of laser induced stresses in medicine are being developed,1 there is a need to know how much stress is
required to damage, that is tear, biological tissue.  These applications range from the cutting of eye tissue to treatments for
stroke.  The stress history that is required to damage the tissue, once integrated into computer simulations, can be used to
design a laser induced stress that would damage or cut the unwanted tissue and not damage the nearby needed tissue.  This
paper will focus on experimental arrangements that can be used to measure the required thresholds for tissue damage.
Simulations using hypothetical parameters for the material failure will be described, and it will be demonstrated that there are
some striking qualitative differences that will delineate the needed thresholds.  

The paper will be divided into three main parts.  First, the basic physics of tensile material failure will be discussed.
This will be used as a foundation on which the rest of the paper will be built.  Second, the numerical method and the material
damage model will be presented.  It will be clear, when the details of this model are compared to the physics, that the model
is only empirical in nature.  The three basic components of the failure (nucleation, growth and coalescence) are represented in
the model, but the equations used in the model are not derived in an ab initio way from the true physics of the failure.  Third,
the results of several simulations will be shown and the conclusions that one can draw from them will be stated.

The remaining part of this introduction will serve as an tutorial to the physics of tensile material failure.  There are three
components of material failure that must be represented in a good model of material failure.  They are nucleation, growth and
coalescence.2  To see the role of each of these processes, we introduce a simulation grid on which the partial differential
equations for quantities such as pressure and density are solved.  We make the approximation that there are many small defects
within a grid cell.  These defects would be things such as dust particles in water.  This approximation allows one to treat the
failure in a statistical sense.

Nucleation is the birth of the element of material failure (i.e., for tensile failure of water, a bubble or void).  See Fig. 1.
There are two conditions that must be met for a bubble to form around a defect.  First, the defect must be hydrophobic

σ σ σsl gs gl> + , (1)

where σ sl =energy per solid-liquid surface area, σ gs =energy per gas-solid surface area, and σ gl =energy per gas-liquid surface
area.  This allows an infinitesimal bubble to be formed around the defect without an infinite pressure being applied.  Second,
the pressure from surface tension −P oσ  must be greater than the applied pressure

P P Ro gl d< − = −σ σ2 / . (2)



This will allow the bubble to grow.  Note that the pressure threshold for nucleation of tensile failure will be determined by
the largest defect size.  For example, water with a failure threshold of 10 bar and a surface tension of 70 erg/cm2 has a
maximum defect size of 140 nm.
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Fig. 1.  Defects in a simulation cell.  When defects are nucleated into
bubbles a small gas layer is formed that will continue to grow into a

bubble.

Once the bubble has nucleated it will grow.  Its growth can be described by a Rayleigh-type equation, a second order ODE
for the bubble radius R as a function of time3

˙̇ ( , ˙)R f R R= . (3)

This equation will have a characteristic time τo  for the growth of the bubble from the defect size to the inter-defect spacing.
The time will be a function of the applied negative pressure τo P( ).  If one assumes a characteristic pressure scale Ps  for a
particular set of simulations then one can use a single time τo sP( ) .

The final stage of material failure, coalescence happens when the bubbles grow to a size that is equal to the inter-defect
spacing.  This is a classic problem in percolation theory.4  If one defines the fractional bubble volume, θb , there will be a
critical fractional bubble volume θbc .  As the fractional bubble volume approaches θbc  the ratio of the effective pressure
applied on the bubble, P, to the average pressure applied on the simulation cell, Po , goes to infinity (see Fig. 2).  The
power via which the pressure ratio goes to infinity is the critical exponent.  There is a close analogy to the electrical
resistivity of a block of copper with voids.  The resistivity of such a structure η  will be inversely proportional to the average
cross sectional area of the connected volume A  (see Fig. 3).  As the critical point is approached the volume is broken into
isolated islands, therefore the resistivity will go to infinity.  Since the pressure is also inversely proportional to the average
cross sectional area, it will scale the same the same way as resistivity

P P A Ao o/ ~ / . (4)

The result of the large increase in the effective pressure will be to accelerate the bubble growth, thereby reducing the
characteristic growth time to zero.  The material will “break”, no longer supporting pressure.

An ab initio material failure model would be based on detailed models for the nucleation, growth and coalescence of
defects as described above.  Such a model has not yet been fully developed.  Instead, we utilize more empirical approach to
material failure which represents the three components in a qualitative manner.5
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Fig. 2.  Effective pressure versus fractional bubble volume.
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Fig. 3.  Effective cross-sectional area for the support of pressure. (a)
Frontal view of simulation cell.  The area on the top of the cell is Ao

and the average pressure is Po .  (b) A top view of the plane designated a
B in Fig. 3a.  The cross-sectional area of the  connected volume is A

and the pressure is P.

3.  LATIS MODEL

Enhancements have been made to the computer code, LATIS (an acronym for LAser TISsue) developed at Lawrence
Livermore National Laboratory.6  In addition to the physics that was previously in the code (laser propagation, laser energy



deposition, hydrodynamics, atomic physics, radiation absorption, radiation emission, radiation transport, and thermal
transport) we have added material strength and failure.

There are three equations that are used to advance the velocities, strains, and then the stresses in succession.  The first is
the dynamic equation (the fluid momentum equation) given by

  ρ
ṙ
v = −∇P (5a)

where P = pressure ,   
r
v velocity= , and ρ = density .  The second is the kinematic equation (an equation of continuity) given

by

  ̇θ = ∇ •
r
v (5b)

 where θ = fractional volume change .  The third is a generalization of Hooke’s law given by

˙ ( ˙ ˙ )P K b= − −θ θ  , (5c)

where K = bulk modulus .

The values of the inelastic changes to the volume θb  (i.e., bubble volume) are chosen such that the pressure relaxes to
the minimum pressure Pσ  if it is less than a minimum pressure and to zero if it is greater than zero.  The inelastic change θb
is limited so that the bubble volume, Vb , will not be less than zero nor greater than the total volume, V .

The damage index, ε D , is calculated as

ε
θ
θD

b

bc
=







min ,1 , (6)

where θbc  is the tensile strain threshold.  This threshold is the critical point where the disconnected bubbles coalesce into one
large one and the material “breaks”.   The index for tensile failure is θb  – the maximum percentage void volume,
max( / )V Vb  (if the tensile damage is not allowed to heal), and V Vb /  (if the tensile damage is allowed to heal).   The density
used to calculate the pressure is taken to be the mass in the zone divided by the volume of the cell that is not void, V Vb− .

The effect of the damage is to decrease the minimum pressure Pσ  to P o Dσ ε( )1 − .  Here P oσ  is the constant that
characterizes the nucleation of the microscopic defects which cause material failure.  This leaves one with the following
expressions for the time derivatives for the inelastic volume
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where the relaxation time is governed by the equation
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and the basic relaxation time is

τ τo
s

ooA c r z
=





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max
min( , )

,
zone area

∆ ∆
. (9)

The first term is the sound transit time across the zone and prevents an instability in the numerical integration of the
equations of motion.  The second term is a zonal user supplied time that accounts in an empirical way for the rate dependence
of the material failure.  The relaxation of τ  from τ o to 0 when ε D = 1 helps model the coalescence of voids.  The time
constant should be chosen to be the characteristic time for the disconnected flaws to grow from the size on which they are
nucleated to the size of the inter-flaw spacing. 

The bulk modulus used is always derived from the equation of state (EOS) tables.  The EOS used in these simulations is
based on the NBS steam tables.  It is accurate to better than 1% in all thermodynamic quantities over the range of densities
and temperatures used.7

4.  SIMULATION RESULTS

Two sets of 1-D planar simulations were done.  The geometries are shown in Figs. 4 and 5.  They are meant to simplify
and make uniform the stress history that a particular point experiences.  The first of these is the backplane spall geometry.  In
this geometry, a laser beam is propagated through glass then absorbed in the material to be tested (water).  Although we have
shown the laser propagating from left to right, the more practical situation is to rotate the picture counter clockwise a quarter
of a turn so that the glass is below the material.  The material is 1 mm thick.  The boundary conditions consistent with this
geometry are v=0 on the left hand side and a free boundary on the right hand side.  For our simulations, the laser is absorbed
with an exponential profile (1/e length of 100 µm) and the energy is put into heat.  The energy deposition is nearly
instantaneous since the energy is added over 4 ns at a constant rate.  For this case the stress confinement time is 100 ns.  The
initial pressure was 1 bar, the initial temperature was 17°C, and the initial density was 1 gm/cc.  When the material strength
and failure model is used, the tensile failure strength P oσ  is set to 10 bar and the tensile failure strain θbc  is set to 1%.   The
second configuration is the midplane spall geometry, Fig. 5.8   In this geometry two laser beams are incident on a 2 mm
thick material, one from each side.  Because of the symmetry, only half of the material needs to be simulated and the velocity
at the midplane will be zero.  The boundary conditions used in the simulation are reversed from the backplane geometry.  The
left hand boundary is free and the right hand boundary is fixed, v=0.

H2O

glass

1 mm

laser

Fig. 4.  Backplane spall geometry.
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Fig. 5.  Midplane spall geometry.

The results of six LATIS simulations will be shown.  Three for the backplane spall geometry and three for the midplane
spall geometry.  The case with no material strength will be shown first.  The absorbed laser energy is 0.5 J/cm2 raising the
temperature 12°C and yielding a peak pressure of 60 bar.  The second case is identical to the first except the material strength
and failure model is invoked.  The energy absorbed is increased to 2.5 J/cm2 for the third case and the material strength and
failure model is used.  The temperature rise is 58°C and the peak pressure is 600 bar.

The first simulation, Fig. 6, shows the expected result with no failure.  A unipolar positive pressure pulse is launched to
the right.  Right after laser deposition the peak pressure is 60 bar.  Half of the pressure propagates to the right forming the
leading edge of the pulse.  The other half propagates to the left and is reflected by the fixed boundary with no flip in polarity
(the reflection coefficient is +1).  This forms the trailing edge of the pulse.  When the pulse reaches the right hand side of the
simulation it reflects with a flip in polarity (the reflection coefficient is -1), then travels back to the left.  When the pulse
subsequently reflects from the left boundary it reaches its maximum tensile pressure of -60 bar.  

The next simulation, Fig. 7, shows the effect of material failure.  When the pulse reflects from the right hand side, the
pulse is limited to the tensile failure threshold of -10 bar.  When the pulse reflects from the left hand side between Fig. 7b and
7c the pressure will try to double to -20 bar as the reflected first half of the pulse overlays the second half of the pulse which
is still incoming.  The failure of the material limits the pressure to -10 bar which will yield a pressure pulse of only -5 bar
seen in Fig. 7c.  As the pulse reflects from the right hand side and becomes a compressive pulse again it recompresses the
bubbles healing the failure.  Although the bubbles have nucleated in this simulation they did not coalesce and were able to
recompress.  This is evidenced by the bubble volume.  It only reaches 10-15% of the value needed for coalescence.  

The third simulation, Fig. 8, has increased energy so that the bubbles can grow large enough to coalesce.  This is
evidenced by the bubble volume reaching 100% of the critical bubble volume between 800 and 950 µm in Fig. 8b.  The 50
µm layer on the right hand side separates from the rest of the material as the density starts to drop in the failed layer and the
pressure goes to zero.  This spalled layer flies off ballistically at a velocity of 20 m/s.  There is also some partial failure at
the front surface as the -10 bar pulse reflects from the left hand side as for the previous case.  This time the maximum bubble
size is 40% of the value needed for coalescence.  The increase is due to the greater width of the -10 bar pulse.
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Fig. 6.  Pressure ( P, solid line, in bar) as a function of distance.
Deposited energy=0.5 J/cm2, P oσ =∞. Fixed surface on left, free surface

on right.  Backplane spallation.
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Fig. 7.  Pressure ( P, solid line, in bar), density ( ρ , dashed line, in
gm/cc multiplied by 40), normalized bubble volume (θ θb bc/ , dotted
line, in %) as a function of distance.  Deposited energy=0.5 J/cm2,
P oσ =10 bar, θbc =1%. Fixed surface on left, free surface on right.

Backplane spallation.
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Fig. 8. Pressure ( P, solid line, in bar), density ( ρ , dashed line, in
gm/cc multiplied by 250), normalized bubble volume (θ θb bc/ , dotted

line, in %) as a function of distance.  Deposited energy=2.5 J/cm2,
P oσ =10 bar, θbc =1%. Fixed surface on left, free surface on right.

Backplane spallation.

The next set of simulations, Figs. 9 thru 11, are analogous to the preceding three simulations except that the boundary
conditions are reversed thereby giving the geometry for midplane spallation.  The first of these, Fig. 9, shows what would
happen if there is no material failure.  The left going pressure pulse is inverted by the reflection from the free surface, yielding
the bipolar pressure profile.  The maximum pressure of ±60 bar is reached at the right hand boundary, that is at the midplane,
between Fig. 9a and 9b.

The next simulation, Fig. 10, shows the effect of material failure.  The negative part of the pressure pulse is clamped at -
10 bar due to the bubble formation on the left hand side (i.e., the front surface).  The maximum bubble volume near the front
surface reaches only 5% of what is needed for coalescence.  When the pulse reflects from the right hand side, between Fig. 10a
and 10b, the negative pressure reaches -20 bar – creating bubbles at the midplane.  The bubbles still can not coalesce because



the bubble volume reaches only 20% of the critical value.  As the pulse approaches the left hand side, between Fig. 10b and
10c, the positive pressure causes the bubbles to collapse.  When the pulse reflects off of the front, the polarity flips yielding
pressures that exceed the failure threshold creating the bubbles seen in Fig. 10c.  The pulse is now limited to ±10 bars as it
bounces back and forth.  The positive part of the pulse eventually recollapses all of the bubbles, as seen in Fig. 10d.  

The final simulation, Fig. 11, shows what happens when the energy deposited is increased so that coalescence can
happen.  As in Fig. 10a, the negative part of the pressure pulse is clamped at -10 bar because of the formation of bubbles.  In
this case the bubble volume has exceeded what is needed for coalescence from 25 to 100 µm, spalling a plane off the front
side that is 25 µm thick.  The pulse then reflects off of the right hand side, between Figs. 11a and 11b, creating bubbles that
do not quite reach the threshold for coalescence.  The pressure pulse then reflects off of the plane at 100 µm, between Figs.
11b and 11c, as if it were a free surface.  This creates a second zone of separation between 150 and 200 µm.  A second spall
plane approximately 50 µm thick is formed and moves ballistically to the left.  The bubbles in the middle do not collapse,
but neither do they ever coalesce.
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Fig. 9. Pressure ( P, solid line, in bar) as a function of distance.
Deposited energy=0.5 J/cm2, P oσ =∞.  Free surface on left, fixed surface

on right.  Midplane spallation.
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Fig. 10.  Pressure ( P, solid line, in bar), density ( ρ , dashed line, in
gm/cc multiplied by 40), normalized bubble volume (θ θb bc/ , dotted
line, in %) as a function of distance.  Deposited energy=0.5 J/cm2,
P oσ =10 bar, θbc =1%. Free surface on left, fixed surface on right.

Midplane spallation.
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The final graph, Fig. 12, shows the change in the position of the backplane, that is the right hand side, for the
simulations shown in Figs. 6 thru 8.  It illustrates the qualitative change in behavior when the threshold for nucleation, then
the threshold for coalescence is exceeded.  When there is no material failure, the backplane shows a regular oscillation that
returns to zero.  If the threshold for nucleation is exceeded but not the threshold for coalescence, the location of the backplane
stays localized but is neither displays a regular behavior nor returns to zero.  Finally, when the thresholds for nucleation and
coalescence are both exceeded, the backplane surface is not localized and moves away from the material with a velocity of 20
m/s.
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Fig. 12.  Change in the location of the backplane as a function of time.

5.  DISCUSSIONS AND CONCLUSIONS

The results of the LATIS simulations give insight into the stress wave propagation and resulting spall.  The simple
geometry of these simulations is useful for determining the parameters of the material failure.  The best of the two geometries
is that shown in Fig. 4 – backplane spallation.  First, the material failure takes place in a region that is not heated by the
laser.  Such heating could lead to thermal weakening of the material that would confuse the results of the experiment.
Second, the spall happens on a readily accessible surface that can be easily diagnosed with interferometry.  For midplane spall,
the failure first happens in the middle of the material and it never coalesces.  On the front surface where there is coalescence,
the incident laser complicates the measurement.  Figure 12 demonstrates the utility of the back surface position measurement
during backplane spall.  There is a qualitative and of course quantitative way to measure both the tensile failure limit for
nucleation P oσ  and the failure strain for coalescence θbc .  The LATIS model with material failure parameters measured via
backplane spallation can be used to design medical therapies.  The different design geometries and treatment protocols can be
tested without constructing a physical device.
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